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In this paper, boundary curve models for the diagnostic features [T12,T11] and [FG,FW] are proposed to
diagnose ventricular septal defects (VSD), which are generally divided into 3 types: small VSD (SVSD),
moderate VSD (MVSD) and large VSD (LVSD). The VSD diagnosis is accomplished in three steps. First,
in the time domain, the diagnostic features [T12,T11], which are the time intervals between two adjacent
first heart sounds (S1) as well as the interval between S1 and the second heart sound (S2), are extracted
from the envelope ET for the heart sound (HS); in the frequency domain, the envelope EF for every cardiac
cycle sound that the HS is segmented into, based on a moving windowed Hilbert transform (MWHT), is
proposed to extract the diagnostic features [FG,FW], which are the center of gravity and the frequency
width of the frequency distribution. Second, to evaluate the detection ability of the proposed diagnostic
features, a classification boundary method based on the support vector machines (SVM) technique is pro-
posed to determine the classifiers to diagnose the VSD sounds. Furthermore, to simplify these classifiers
and make them parameterizable, according to their shapes, the least squares method is employed to
build ellipse models for fitting the classification boundary curves. Finally, the numerical results based
on the ellipse models are introduced for diagnosis of the VSD. Moreover, to validate the usefulness of
the proposed method for sounds besides VSD and normal sounds, aortic regurgitation (AR), atrial fibril-
lation (AF), aortic stenosis (AS) and mitral stenosis (MS) sounds are used as examples to be detected. As a
result, the classification accuracies (CA) achieved is 98.4% for the detection of clinical VSD sounds from
normal sounds and are 95.1%, 94.8% and 95.0%, respectively, for the detection of clinical SVSD, MVSD,
and LVSD among VSD sounds.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

A ventricular septal defect (VSD), a type of congenital heart dis-
ease (Wikipedia, 2013; MedlinePlus, 2013), is a heart malformation
present at birth. A VSD is a hole in the part of the septum that sepa-
rates the ventricles. The hole allows oxygen-rich blood to flow from
the left ventricle into the right ventricle, instead of flowing into the
aorta and out to the body as it should (Medicine, 2003; Merck, 2013;
Wikipedia, 2013). It is estimated that approximately one infant in
500 will be born with a VSD (Medicine, 2003; Wikipedia, 2013). Clin-
ically, a VSD is generally classified into three types, according to the
size of the hole (Medicine, 2003): SVSD, whose defect diameter is
smaller than 5 mm (denoted as U 6 5 mm), MVSD (5 < U 6 15 mm)
and LVSD (U > 15 mm). The general methods for diagnosing the VSD
disease include chest X-ray, electrocardiography, ECG, clinical
auscultation, and so on (Medicine, 2003; Merck, 2013; Wikipedia,
2013). Among these methods, heart auscultation by using a stetho-
scope is the simplest, and this method is routinely used as an early
diagnostic study. Two studies mention the detection of VSD by heart
auscultation. However, one study (Bhatikar, DeGroff, & Mahajan,
2005) showed that the achieved accuracy of the discrimination
between innocent murmurs and VSD murmurs was 90%, and the
other study (Higuchi et al., 2006) verified that VSDs were incorrectly
classified as aortic stenosis (AS) or aortic regurgitation (AR). Further-
more, to date, there have not been any reports on detecting SVSD,
MVSD and LVSD. In recent years, many researchers proposed some
automatic methods for distinguishing heart sound signals by using
computer techniques and digital signal processing technology. No
matter which methods are used, they can be generally summarized
in two-steps: (1) how to extract the heart sound (HS) analysis
features using various signal processing methods, and (2) how to
diagnose heart disease from the HS. As for the HS analysis methods,
they can be generally divided into two approaches: time domain
analysis and frequency domain analysis. In the time domain,
because every cardiac cycle is usually composed of S1 and S2, these
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sounds are taken as the emphasis to analyze HS in many studies
(Gupta, Palaniappan, Swaminathan, & Krishnan, 2007; Yadollahi &
Moussavi, 2006; Martinez-Alajarin & Ruiz-Merino, 2005; Liang,
Lukkarinen, & Hartimo, 1997; Syed, Leeds, Curtis, & Guttag, 2006;
Jiang & Choi, 2006). Particularly, in one study (Jiang & Choi, 2006),
the diagnostic features [T11, T12, T1, T2]i in the time domain ex-
tracted from the characteristic waveform (CSCW) have proven to
be useful for the identification of normal sounds and heart diseases,
including atrial fibrillation (AF), aortic regurgitation (AR) and mitral
stenosis (MS); where T11i is the time interval of two adjacent S1,
T12i is the time intervals between S1 and S2, T1i is the time width
of S1, and T2i is the time width of S2 in ith sequential HS data. How-
ever, unexpected noise is still a difficult problem for this CSCW. For-
tunately, another envelope CW (denoted by ET) for HS, based on the
Viola integral method, has been proposed and was shown to be
effective against not only amplitude variation but complex back-
ground noise by the study (Yan, Jiang, Miyamoto, & Wei, 2010). In
the frequency domain, many researchers Syed et al. (2006), Wu,
Lo, and Wang (1995), Bhatikar et al. (2005), Nygaard, Hasenkam,
Pedersed, Paulsen, and Thuesen (1992), Turkoglu, Arslan, and Ilkay
(2002), Reed, Fritzson, and Reed (2004), Turkoglu, Arslan, and Ilkay
(2003), Travel and Katz (2005), Kim (2003), Sava, McDonnell, and
Fox (1994), Iwata, Ishii, Suzumura, and Ikegaya (1980), Kim, Lee,
Hub, and Chang (1998) and Adolph, Tanaka, and Stephens (1970)
have been concerned with the characteristic extraction by the local
frequency analysis method. However, in one previous study (Choi &
Jiang, 2010), using two diagnostic features [Fmax,FW] extracted from
the envelope AR-PSD in the frequency domain to detect heart mur-
murs has been verified as an efficient method because the highest
classification accuracies were achieved for classifying normal and
abnormal sounds. Fmax describes the maximum peak of the charac-
teristic waveform and FW is the frequency width between the
crossed points of the characteristic waveform on a selected thresh-
old value. However, it is a pity that there was not a detail explanation
about how to select one cardiac cycle HS. Moreover, the method for
extracting the envelope in the frequency domain was overly compli-
cated. Recently, a novel method for the selection of the cardiac cycle
sound, MWHT, proposed by our studies (Sun et al., 2013) has been
reported to provide sufficient performance. The moving average
method is a simple way to generate the envelope. Artificial neural
networks (ANN) are a computational tool for pattern classification
which have been the subject of researchers’ interests in the past
few years for the classification of heart sounds. For the classification
of cardiac sounds, ANN or NN provided a high classification rate and
are frequently used as a classifier (Wu et al., 1995; Bhatikar et al.,
2005; Nygaard et al., 1992; Turkoglu et al., 2002; Reed et al., 2004;
Turkoglu et al., 2003). Recently, support vector machines (SVM) pro-
posed by Vapnik (Cortes & Vapnik, 1995; Vapnic, 1995) have
emerged as a new classification technique; SVM have been used suc-
cessfully for the solution of many problems including heart mur-
murs classification (Choi & Jiang, 2010), cancer diagnosis (Akay,
2009), handwritten digital recognition (Mehta & Lingayat, 2008),
etc. When using SVM and selecting the radio basis function (RBF)
as a kernel function, the problems of how to optimize input features
C, which control the tradeoff between complexity of the machine
and the number of no separable points, and how to set the best ker-
nel parameter, the width of RBF, are confronted. In a study (Akay,
2009), a proposed grid search approach was verified as an efficient
way for searching the parameters. However, the expression of the
classifier is so complicated that the calculation for detecting the fea-
tures is huge. To overcome this problem, a least squares fitting meth-
od is widely used in graphic fitting (Gander, Golub, & Strebel, 1994),
based on the shape of graphic. According to the above mentioned re-
search, in this study, in the time domain, the envelope ET for HS
based on the Viola integral method is extracted first. And then in
the frequency domain, the envelope EF for every cardiac cycle sound
which HS is segmented into, based on MWHT, is extracted. The
diagnostic features [T12,T11] in the time domain and [FG,FW] in the
frequency domain are extracted from the ET and EF, respectively.
To evaluate the performance of the proposed method and to
build an easily understandable detection system, based on an SVM
technique whose parameters are set automatically, the classifica-
tion boundary curves for data sets (DSs) consisting of [T12,T11]
and [FG,FW] are generated to determine the detecting HS. Further-
more, to simplify these boundary curves based on their shapes, a
least squares method was employed to build ellipse models for
them. Finally, the efficient of the proposed method is validated by
the classification accuracy of the diagnosis abilities for VSD sounds.
Moreover, to validate the usefulness of the proposed method, AF, AR,
AS and MS sounds are evaluated in addition to normal and VSD
sounds.

2. Heart sounds auscultation

Auscultation denotes the act of analyzing sounds in the body
that are produced in response to mechanical vibrations generated
in the organs. The heart sounds can be collected by an electrical
stethoscope. In general, there are 4 positions: aortic area, pulmon-
ary area, tricuspid area and mitral area. As for VSD cases, HS col-
lected from the tricuspid area are reported to supply more
important information (Bernard Karnath, 2002). In this study, the
HS were all collected from the tricuspid area. For every cardiac
sound cycle, there are two primary components, S1 and S2, which
are generated at the end of atria contraction and the closure of the
aortic valve and pulmonary valve, respectively. The original HS sig-
nal is denoted here by ST in the time domain and its fast fourier
transform (FFT) result is denoted as SF. For normal sounds, the fre-
quency distribution generally concentrate on the low frequency re-
gion. The typical normal sound is named NM and is plotted in
Fig. 1. Fig. 1(a) shows the plot of a normal sound in the time do-
main, which is a sample from a 24-year-old young, healthy man
with a heart rate of 68 bpm. Fig. 1(b) is the frequency domain re-
sults, where the peak frequency is approximately 30 � 40 Hz. For
the VSD sounds in patients with a SVSD, there is a minimal shunt-
ing of blood and the pressure in the right ventricle remains normal
(VSDCause, 2013; Medicine, 2003; Merck, 2013). Because the right
ventricular pressure is normal, there is no damage to the lung arte-
rioles and the sound is similar to normal sounds. A typical SVSD
sound signal, ST, extracted from a female (U = 4 mm, age 3, weight
13 kg, and heart rate 85 bpm) is plotted in Fig. 1(c) and and its FFT
results is plotted in Fig. 1(d). In patients with a MVSD, the shunting
of blood from the left ventricle into the right ventricle is still
restrictive. Therefore, it causes insufficient oxygenation of the
blood and possibly left heart failure and heart beat is accelerated
to a certain degree (VSDCause, 2013; Medicine, 2003). A typical
MVSD sound signal, ST, extracted from a patient with a MVSD
(U = 10 mm) (a female of age 4 with weight 14 kg and 94 bpm
heart rate) is plotted in Fig. 1(e) and and its FFT results is plotted
in Fig. 1(f). In patients with a LVSD, there is a significant shunting
of blood from the left ventricle through the right ventricle to the
lungs and back to the left atrium and onto the left ventricle, which
causes the left atrium and left ventricle to handle an increased
amount of blood, and the workload on the heart increases. The in-
creased workload on the heart also increases the heart rate (VSD-
Cause, 2013; Medicine, 2003; Merck, 2013). A typical LVSD
sound, ST, extracted from a male (U = 18 mm, age 0.6, weight
6 kg, and heart rate 124 bpm) is plotted in Fig. 1(g) and and its
FFT results is plotted in Fig. 1(h). Fig. 1 shows that although the
heart rate is getting faster with an increasing VSD size (Figs. 1(a),
(b) and (c)), the frequency distribution is getting narrower;
although the frequency distribution of LVSD is close to that of
NM, the heart rate of LVSD is much faster than that of NM.
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Fig. 1. Examples for NM and VSD sounds. (a), (c), (e) and (g) show a typical normal and 3 typical VSD sounds in the time domain, (b), (d), (f) and (h) show their fourier
transform results.
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Therefore, the time domain analysis combined with the frequency
analysis might have a better performance than using only the time
domain analysis or only the frequency domain analysis.
3. Features [T12,T11] and [FG,FW] extraction
3.1. HS preprocessing

An HS signal, ST, is tested with 16 bit-depth at a sampling
frequency FS = 44.1 kHz. A previous study (Choi & Jiang, 2010)
reported that HS signals are mainly dispersed along the frequency
range of 20 � 700 Hz. The signal ST is then filtered by the wavelet
decomposition (WD) method for cancellation of the unwanted
frequency components over 689 Hz and below 21.5 Hz. Daubechies
10 wavelet, a good choice as it addresses biomedical signals very
well (Nilsson, Funk, Olsson, von Schéele, & Xiong, 2006), is used
as the mother wavelet. In the following analysis, the filtered and
normalized signal is denoted by X[m],0 = 1,2, . . . ,M � 1 and is used
to extract the envelope ET for HS signal.

3.2. ET extraction

The envelop CSCW proposed in the literature (Jiang & Choi,
2006; Samjin Choi, 2005) has been reported to provide sufficient
performance compared to conventional Shannon envelope and Hil-
bert envelope algorithms, which were used as the empirical or
manual way and the automatic selecting way to estimate HS seg-
mentation. However, unexpected noise is still a difficult problem
for this method. To overcome this problem, another envelope ET

for HS, based on the Viola integral method, has been proposed in
the study (Yan et al., 2010). This study showed that the ET is
effective against not only amplitude variation but also a complex
background noise. This idea is described in the following
paragraphs. Consider a data series X[m] preprocessed by WD for
a signal ST[m],m = 0,1, . . . ,M � 1, where M denotes the number of
the ST. In a LT neighbourhood of time m, called the width LT time
scale, the envelope ET[m] is obtained by

ET½m� ¼
1

2LT þ 1

XmþLT

k¼m�LT

X½k� � X½m�
� �2

;

m ¼ LT; LT þ 1; . . . ;M � 1� LT; ð1Þ

where

X½m� ¼ 1
2LT þ 1

XmþLT

k¼m�LT

X½k�: ð2Þ

Because the studies (Kumar et al., 2006; Jiang & Choi, 2006) have
shown that the duration of S1 or S2 is greater than 0.1 s, in this
paper LT = 0.5 � 0.1 � FS = 2205is set. Finally, a normalization is
applied by setting the maximum amplitude of ETto 1.

3.3. HS segmentation

The novel method MWHT proposed by our study (Sun et al.,
2013) has been reported to provide sufficient performance com-
pared to a published algorithm (Yan et al., 2010), which was better
than the wavelet decomposition method. This idea is described in
the following paragraphs. Consider a M-point discrete-time series
ET[m](m = 0,1, . . . ,M � 1), and suppose the number N of the moving
window WN[l](l = � (N � 1)/2, �(N � 1)/2 + 1, . . . , (N � 1)/2) is an
odd number. The ĚT[n] is computed by

�ET½n� ¼
XnþN�1

2

m¼n�N�1
2

ET½m�WN ½m� n�WE m� n� N � 1
2

� �� �
;

n ¼ N � 1
2

;
N þ 1

2
; . . . ; ðM � 1Þ � N � 1

2
ð3Þ

where
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WE½i� ¼
cosðN�1�2i

2N pÞ�cosðN�1�2i
2 pÞ

NsinðN�1�2i
2N pÞ for i ¼ 0;1; . . . ; N�3

2 ; Nþ1
2 ; . . . ;N � 1;

0 for i ¼ N�1
2 :

8<
:

ð4Þ

According to the best choice in our study (Sun et al., 2013), the win-
dow is selected to be a smooth Gaussian window, and the number N
of the Window is set as 1 s.

Based on the t-axis of the positive-to-negative points (PNP) of
the ĚT corresponding to the t-axis of the nadirs in the ET, the HS
can be segmented into every cardiac cycle. The detailed segmenta-
tion procedure, shown in Fig. 2, is summarized as follows:

(a) First, in the time domain, the envelope ET, shown as the
black lines plotted in Fig. 2(a) for normal sounds and in
Fig. 2(b) for VSD sounds, is extracted from the heart sounds
X, shown as the yellow lines plotted in Figs. 2(a) and (b).

(b) Second, based on Eq. (3), the ĚTs, the black lines plotted in
Fig. 2(c) for normal sounds and in Fig. 2(d) for VSD sounds,
are generated form the ETs plotted in Figs. 2(a) and (b).

(c) Finally, the PNP, marked by � in Figs. 2(c) and (d), are deter-
mined by
PNP ¼ i; if

�ETðiÞ ¼ 0;
�ETði� 1ÞP 0;
�ETðiþ 1Þ 6 0:

8><
>: ð5Þ
Then, XPi
, representing ith cardiac cycle (Figs. 2(a) and (b)), is

calculated by

XPi
¼ X½PNPiþ2� � X½PNPi�: ð6Þ

Therefore, the HS signal X is divided into XPi
ði ¼ 1;2; . . . ; IÞ, where I

is the number of cardiac cycles signal included in HS signal X.

3.4. EF extraction

For the ith cardiac cycle XPi
, in the frequency domain the enve-

lope EFi
is obtained by the moving average method as follows:

EFi
½k� ¼ 1

2LFi
þ 1

XkþLFi

l¼k�LFi

jXFi
½l�j; k ¼ LFi

; . . . ;Ni � 1� LFi
; ð7Þ

where

XFi
½l� ¼

XNi�1

n¼1

XPi
½n� exp �j

2p
Ni

nl
� �

; l ¼ 0;1;2; . . . ;Ni � 1 ð8Þ

Ni is the length of XPi
; j � j is the absolute value sign and 2LFi

is the
window width. Because the width of the frequency is generally
Fig. 2. Example of the segmentation logic for the NM case and VSD cases. The
greater than 16 Hz, then LFi
¼ 0:5 � 16 � ðFsÞ=ðNiÞ is set for the

ith cardiac cycle heart sound XPi
. Moreover, EFi

is also normalized.

3.5. [T12,T11] and [FG,FW] definition

As mentioned in the study (Jiang & Choi, 2006), the time inter-
val between two abutted S1, the interval between S1 and S2, the
width of S1, and the width of S2 are very important parameters
for detecting heart disorders. A simple way to calculate these inter-
vals is to measure the peaks of S1 and S2. However, the extracted
peaks sometimes are not correct, especially for strong heart mur-
mur sounds. To solve this problem in this study, the centers of
gravity of S1 and S2 are considered. The concept for defining the
diagnostic parameters in the time domain is described in
Fig. 3(a). HT is the threshold and a suitable value should be se-
lected. The left and right points on the curve ETcrossed by the HT

line are defined as Lk(i) and Rk(i) (k = 1,2;i = 1,2, . . . , I) in a sequen-
tial order. The centers of gravity of S1iand S2i in the ith cardiac cy-
cle XPi

are defined by G1(i) and G2(i) and obtained as follows:

GkðiÞ ¼
PRkðiÞ

m¼LkðiÞ
m� E2

TðmÞPRkðiÞ
m¼LkðiÞ

E2
TðmÞ

; k ¼ 1;2: ð9Þ

So that the time domain features are given by

T12ðiÞ ¼ G2ðiÞ � G1ðiÞ;
T11ðiÞ ¼ G1ðiþ 1Þ � G1ðiÞ:

�
ð10Þ

On the other hand, the diagnostic features [Fmax,FW]in the fre-
quency domain have been verified to be useful for detecting heart
murmurs (Choi & Jiang, 2010), where Fmax is the frequency at the
maximun value and FW is the corresponding width of the envelope
EF over given threshold value, which is described in Fig. 3(b) and
and given by

FWðiÞ ¼ RFðiÞ � LFðiÞ; ð11Þ

where LF(i) and RF(i) are the left and right points of intersection be-
tween EFi

and the given threshold value HF. However, the value of
Fmax, especially for VSD sounds, will be significantly influenced
due to the heart murmurs. Instead of Fmax, the center of gravity of
the FG for EFi

is considered as a frequency index, which is described
in Fig. 3(b), and is obtained as follows:

FGðiÞ ¼
P½Ni=2�

l¼0 l� E2
Fi
½l�P½Ni=2�

l¼0 E2
Fi
ðlÞ

: ð12Þ

To extract features in the time domain and the frequency domain,
the value of HTwill be a suitable value between the interval
[0.2,0.4] and the threshold value HFhas good performance in the
interval [0.1,0.2]. By experimental analysis, in this paper, the HFis
ĚT plotted in (c) and (f) are generated by a Gaussian Window with N = 1 s.



Fig. 3. Definition of the diagnostic features [T12,T11] &[FG,FW] and their scatter diagram. (a) and (b) show a typical normal sound, (c) shows the scatter diagram of [T12,T11] and
(d) shows the scatter diagram of [FG,FW] extracted from the typical NM, SVSD, MVSD, and LVSD sounds.
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set at 0.2. Fig. 3(c) and (d) show the plots of [T12,T11] and [FG,FW],
which are extracted from the typical NM, SVSD, MVSD and LVSD
sounds. Fig. 3 shows that

(1) In the time domain, SVSD is difficult to discriminate from
MVSD and NM, but in the frequency domain, SVSD is very
easy to discriminate from MVSD and NM.

(2) In the frequency domain, LVSD is difficult to discriminate
from MVSD and NM, but in the time domain, it is easy to dis-
criminate LVSD from MVSD and NM.

(3) In the frequency domain, the distribution of MVSD is close to
NM and LVSD, but in the time domain, MVSD is very far from
NM and LVSD.

Therefore, the combination of feature parameters [T12,T11]and
[FG,FW]will be powerful to diagnose VSD.
4. Classification boundary model procedure

In this section, the boundary curves are generated for the DSs
consisting of [T12,T11] and [FG,FW] based on SVM, to simply the
classification boundary curve, considering the shape of the classifi-
cation boundary curve and based on the least squares method; the
ellipse models (EMs) of the classification boundary curves, which
enclose the DSs with a suitable sensitivity, are built as classifiers
to diagnose the VSD sounds.

4.1. Classification boundary function based on SVM

A classification boundary for feature DSs based on the SVM
technique is proposed to be used as the classifier to diagnose
VSD sounds. To generate a suitable classification boundary for
the given feature DSs, other artificially generated DSs, where clas-
sification accuracy is based on the automatically searched optimal
features, are described as follows.

4.1.1. A review on SVM
SVM have been proposed as an effective statistical learning

method for classification of different data classes by the classifica-
tion curves which are so called support vectors (Vapnik, 1999).
SVM have been used successfully for the solution of many prob-
lems, including heart murmur classification (Choi & Jiang, 2010),
cancer diagnosis (Akay, 2009), handwritten digital recognition
(Mehta & Lingayat, 2008), etc.

The main purpose of SVM is to find a classification boundary
curve g(x) = 0, which has deviated away from all the training DSs
and is used to obtain the classification function f(x). When the sep-
arating samples belong to linear inseparable classes, generally, a
non-linear mapping, usually defined as /(�):Rn ? Rnh, is used to
map the input vector into a high dimensional feature space. In this
case, the classification function f(x) is defined by

f ðxÞ ¼ signðgðxÞÞ; where gðxÞ ¼WT/ðxÞ þ b: ð13Þ

Where x is an input vector, Wis an adjustable weight vector, b is a
bias, and g(x) is the discriminant function. Suppose the two classes
of training DSs consisting of the positive DSs(+)and the negative
DSs(�). According to the structural risk minimization inductive prin-
ciple and the Kuhn Tucker optimization theory (Bertsekas, 1995),
the approach to solve g(x) can be written as a classic quadratic opti-
mization problem

max
a

QðaÞ ¼
XN

i¼1

ai �
1
2

XN

i¼1

XN

j¼1

aiajyiyj/
TðDSsiÞ/ðDSsjÞ; ð14Þ

subject to

XN

i

aiyi ¼ 0;

0 6 a 6 C;

8><
>: ð15Þ

where DSsi is the ith DSs instance, yi 2 { + 1, � 1} is a label that
determines the class of DSsi, and C is a user-defined positive finite
constant. A larger C means a higher penalty and it usually is as-
signed to empirical errors. The solution of Eq. (14) should satisfy

ai yi

XN

j¼1

/TðDSsjÞ/ðDSsiÞ þ b

 !
� 1

" #
¼ 0; i ¼ 1;2; . . . ;N; ð16Þ

which has non-zero multipliers if and only if the points (termed SV)
satisfy

yi

XN

j¼1

ajyj/
TðDSsjÞ/ðDSsiÞ þ b

 !
� 1 ¼ 0: ð17Þ
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The g(x) is determined by the SV, which is a small subset of the training
vectors. Here, /T(DSsi) � /(DSsj) can be replaced by a kernel function

kðDSsi;DSsjÞ ¼ /TðDSsiÞ � /ðDSsjÞ: ð18Þ

k(DSsi,DSsj) may be any of the symmetric functions that satisfy
the Mercel conditions (Courant & Hilbert, 1989) and that perform
the non-linear mapping into the feature space. In this paper, the
Gaussian function is selected as the kernel function.

kðDSsi;DSsjÞ ¼ exp �kDSsi � DSsjk2

2s2

 !
: ð19Þ

Hence the classification boundary function of xcan be expressed as

gðx; sÞ ¼
XN

i¼1

a�i yi exp �kx� DSsik2

2s2

 !
þ b� ð20Þ

where

a� ¼ arg max
XN

i¼1

ai �
1
2

XN

i¼1

XN

j¼1

aiajyiyjkðDSsi;DSsjÞ
" #

; ð21Þ

b� ¼ ym �
XN

i¼1

a�i yikðDSsi;DSsmÞ; a�m – 0: ð22Þ

Therefore, for a testing vector xs, the detection method can be deter-
mined by

xs belongs to :
DSsð�Þ class; if gðxs; sÞ 6 0;

DSsðþÞ class; otherwise:

(
ð23Þ
4.1.2. Classification boundary calculation procedure
To obtain the distribution boundary surrounding a given DSs(�)-

with the SVM technique, one needs to build another suitable DSs(+)-

which is nearer to or on the distribution boundary DSs(�). As an
example, suppose DSs(�) = [T12,T11], is a DSs whose boundary is
to be determined. The data sets DSsðþÞ ¼ ½TðþÞ12 ; TðþÞ11 � are then gener-
ated by the following algorithm.

(1) Suppose that T12, the element of DSs(�), follows the normal
distribution and calculate its average lT12

and standard devi-
ation rT12 .

(2) Generate a data set TðþÞ12 based on the normal distribution
with parameters lTðþÞ12

¼ lT12
	 8rT12 and rTðþÞ12

¼ 4rT12 so that
there might be approximately 15%data of T ðþÞ12 overlapped on
the boundary of data set T12.

(3) Follow the same process to get TðþÞ11 . The final data set is
obtained as DSsðþÞ ¼ ½TðþÞ12 ; T

ðþÞ
11 �.

(4) Determine the parameter Cin Eq. (15). Referring to the grid
search approach (Akay, 2009),the range of C
C 2 2f�5;�4;...;15g ð24Þ
is suggested to be an efficient selection. Based on our numerical
testing, we set C = 215.

(5) Determine the parameter sin Eq. (19). Based on Chebyshev’s
inequality,
pðjxð�Þ � lxð�Þ j 6 sÞP 1� ðrxð�Þ Þ
2

s2 : ð25Þ
For any probability distribution, if sis set from 2rxð�Þ to 4rxð�Þ , there
will be at least 75–93.75% of samples close to the mean lxð�Þ . In our
grid search approach program, the kernel parameter sis set as
s 2 ½2 : 0:1 : 4�rxð�Þ . For each s, one can obtain a boundary curve
g(x,s) = 0 based on Eq. (20).
(6) To obtain the optimal parameter sopt, based on Eq. (23)the
classification accuracy (CA) for the learning DSs consisting
of DSs(�) = [T12,T11](�) and DSs(+) = [T12,T11](+) at
s 2 ½2 : 0:1 : 4�rxð�Þ is calculated by
CAð%Þ ¼ TPþ TN
TPþ FPþ FNþ TN

� 100; ð26Þ
where TP represents true DSs(�) = [T12,T11], TN represents true
DSs(+) = [T12,T11](+), FP represents false DSs(�) = [T12,T11] and FN rep-
resents false DSs(+) = [T12,T11](+). The scorresponding to the maxi-
mum of CAis selected as sopt.

(7). The classification boundary function g(x,sopt) = 0 is then
obtained.

4.1.3. Experimental results for the boundary curves
The total DSs, including 242 normal sound samples (denoted as

DSsT
NM consisting of T12 and T11, and DSsF

NM consisting of FG and
FW) from 16 healthy persons and 226 VSD sound samples (DSsT

VSD

and DSsF
VSD), including 62 SVSD sound samples (DSsT

SVSD and
DSsF

SVSD from 10 patients), 90 MVSD sound samples (DSsT
MVSD

and DSsF
MVSD from 15 patients) and 74 LVSD sound samples (DSsT-

LVSD and DSsF
LVSD from 12 patients), are used to obtain the classifi-

cation boundary functions. Firstly, the 80% DSs are randomly
selected from the total DSs to generate the boundary curves
gNM

T ¼ 0 and gNM
F ¼ 0 for the normal sounds, and gVSD

T ¼ 0 and
gVSD

F ¼ 0 for the VSD sounds. Further, to reduce the influence due
to selection of the training data samples, the boundary curves are
calculated from three times randomly selected data samples. The
results have shown that there is not a big difference between the
three obtained boundary curves. The boundary curves shown in
Fig. 4 are the averaged curves. Based on Eq. (23), from the features
[T12,T11] and [FG,FW], the method to detect sound for identifying
VSD sounds and normal sounds is defined by:

The detecting sound belongs to :
VSD; if gVSD

T ð½T12 ;T11 �Þ60 and gVSD
F ð½FG ;FW �Þ60;

NM; if gNM
T ð½T12 ;T11 �Þ6 0 and gNM

T ð½FG ;TW �Þ6 0
Not sure; otherwise:

8><
>:

ð27Þ

To evaluate the performance of these classification boundary
curves, by the detection sound Eq. (27) and the elements of the con-
fusion matrix Table 1, classification accuracy (CA), sensitivity (Se)
and specificity (Sp) value can be defined as

CAð%Þ ¼ TPþTN
TPþFPþFNþTN� 100;

Seð%Þ ¼ TP
TPþFN� 100;

Spð%Þ ¼ TN
FPþTN� 100;

8><
>: ð28Þ

where TP represents true VSD sound, TN represents true normal
sound, FP represents false VSD sound and FN represents false nor-
mal sound. Using the classification boundaries to detect a new
DSs consisting of 253 normal and 124 VSD sounds, the classification
results summarized in Table 2 show that the sensitivity Se = 98.8%,
the specification Sp = 98.1% and the accuracy CA = 98.4%. Because
the VSD sounds consist of the SVSD, MVSD and LVSD, 62 SVSD
sound samples, 90 MVSD sound samples and 74 LVSD sound sam-
ples are used to obtain the boundary curves for SVSD, MVSD and
LVSD. The boundary curves are calculated from three times ran-
domly selected data samples. The boundary curves shown in
Fig. 5 are the averaged curves. Finally, the new data set from 124
VSD sounds is analyzed and the accuracy Se, Sp and CA are summa-
rized in Table 3.



Fig. 4. Experimental results of the classifiers designed for identification of the normal and VSD sounds.

Table 1
Confusion matrix representation.

Actual Predicted

Positive Negative

Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Table 3
Comparative analysis for the classification accuracies for SVSD, MVSD and LVSD by
EMs and Boundary curves.

Accuracies (%) SVSD MVSD LVSD

Boundaries EMs Boundaries EMs Boundaries EMs

Se 95.2 95.4 94.6 95.1 94.9 95.1
Sp 94.2 95.8 93.1 94.2 93.6 94.8
CA 94.8 95.7 93.7 94.7 94.1 95.0

Table 2
Comparative analysis for the classification accuracies by the EMs and boundary
curves.

Accuracies (%) Boundaries EMs

Se 98.8 98.6
Sp 98.1 98.4
CA 98.4 98.5
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4.2. Classification models procedure

4.2.1. Ellipse models
In the above section, although the classification boundary

curves (Fig. 4 and Fig. 5) for a training DSs are obtained with higher
accuracies by the SVM technique, based on Eq. (20), the mathemat-
ical expressions of the classification curves are too complicated to
be expressed by parameters. Furthermore, the computation is very
intensive. To simplify the classification curves and make them
parameterizable, models for the classification boundary curves
are considered. Because these shapes of the classification boundary
curves plotted in Fig. 4 and Fig. 5 are similar to ellipses, ellipse
models for the classification boundary curves are built in this sec-
tion. Ellipse fitting based on the least squares method is widely
Fig. 5. Classification boundaries and the feature paramete
used (Gander et al., 1994; Chaudhuri, 2010; Prasad, Leung, & Quek,
2012; Ahn, Rauh, & Warnecke, 2001). It is an optimal estimation
technique introduced by the maximum likelihood when the ran-
dom error is assumed to belong to a normal distribution, and it
can minimize the error of measurement. Therefore, it can also be
seen as a group from the measured value and a group of unknown
variables method. An ellipse is a special case of the general conic
which can be described by an implicit second order polynomial

FðA; x; yÞ ¼ A11x2 þ A21xyþ A31y2 þ A41xþ A51yþ A61 ¼ 0; ð29Þ

with an ellipse specific constraint

A2
21 � 4A11A31 < 0; ð30Þ

where A1i(i = 1,2, . . . ,6) are coefficients of the ellipse, and (x,y) is the
coordinates of a point lying on it. The polynomial F(A,x,y) is called
the algebraic distance of the point (x,y) to the given conic. Based on
the least squares method, the fitting of a general conic to a set of
points (xi,yi),i = 1,2, . . . ,N may be approach by minimizing the sum
of the square algebraic distances of the points to the conic which
is represented by the coefficient A:
rs extracted from the SVSD, MVSD and LVSD sounds.



Fig. 6. Ellipse geometric representation in the x–y axis plane.
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minA

XN

i¼1

F2ðA; xi; yiÞ; ð31Þ

which can be solved directly by the least squares approach. In this
paper, to describe the significance of the ellipse model for the clas-
sification boundary curves, the ellipse, as shown in Fig. 6, is pre-
sented as the geometric parameters [xc,yc,a,b,h], where the point
[xc,yc] is the center, a is the semi-major length, b is the semi-minor
length, and h is the counterclockwise angle of rotation from the
x-axis and the major axis of the ellipse. The [xc,yc,a,b,h] correspond-
ing to the ellipse in Eq. (29) is transformed by

xc ¼
A21A51 � 2A31A41

4A11A31 � A2
21

; ð32Þ

yc ¼
A21A41 � 2A11A51

4A11A31 � A2
21

; ð33Þ

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðA11A2

51 þ A31A41 þ A2
21A61 � A21A41A51 � 4A11A31A61Þ

ðA2
21 � 4A11A31Þ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA11 � A31Þ2 þ A2

21
2
q

� A11 � A31�
2

vuuut ; ð34Þ

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðA11A2

51 þ A31A41 þ A2
21A61 � A21A41A51 � 4A11A31A61Þ

ðA2
21 � 4A11A31Þ½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA11 � A31Þ2 þ A2

21
2
q

� A11 � A31�
2

vuuut ; ð35Þ
Fig. 7. The classification boundary curves and their ellipse models for normal soun
h ¼

0 for A21 ¼ 0 and A11 6 A31;
p
2 for A21 ¼ 0 and A11 > A31;

arccotðA11�A31
A21
Þ=2 for A11 > A31 and A21 – 0;

p
2 þ arccotðA11�A31

A21
Þ=2 for A31 > A11 and A21 – 0:

8>>>><
>>>>:

ð36Þ

Therefore, for the points P on the ellipse, P1 within the ellipse and
P2 outside of the ellipse in Fig. 6, according to the definition of
the ellipse, the points P,P1 and P2 must be satisfied with

kP � F1k2 þ kP � F2k2 ¼ 2a;

kP1� F1k2 þ kP1� F2k2 < 2a;

kP2� F1k2 þ kP2� F2k2 > 2a;

8><
>: ð37Þ

where k � k2 represents the Euclidean distance, and F1 and F2 are
the focus points computed by

F1 : ðxc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b22

p
cosðhÞ; yc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b22

p
sinðhÞÞ;

F2 : ðxc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b22

p
cosðhÞ; yc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b22

p
sinðhÞÞ:

8<
: ð38Þ
4.2.2. Ellipse models (EMs) based diagnostic method
The EMs for the classification boundary curves shown in Fig. 4

and Fig. 5 are plotted in Fig. 7 and are expressed as the parameters
[xc,yc,a,b,h]. The classifier model EMs are [0.326,
0.9985,0.1878,0.0689,85.69o], [0.290,0.7196,0.0655,0.3166,
80.3474o],[0.324,0.825,0.198,0.021,90.6o], [0.296,0.757,0.211,
0.020,90.9o], and [0.247,0.597,0.171,0.036,84.7o] for NM, VSD,
SVSD, MVSD, and LVSD in the time domain, respectively. In the fre-
quency domain, they are [38.7042,59.2052,32.046,8.6774,76.39o],
[54.38,135.28,81.68,9.80,76.39o],[67.25,185.49,28.67,8.52,85.7o],
[55.08,132.54,32.39,10.07,76.5o] and [41.99,91.82,33.58,6.83,81.29o],
respectively. Therefore, by [xc,yc,a,b,h] we can determine the
distribution of the diagnostic features T12,T11,FG, and FW.
Furthermore, the angle perhaps indicates an pertinence relation
between T12 and T11 in the time domain, and between FG and FW

in the frequency domain. Actually, using the ellipse models to diag-
nose the heart sounds is to judge whether the [T12,T11] and [FG,FW]
are both distributed in the insides of the ellipse models for NM or
VSD (SVSD, MVSD, LVSD). According to the relationship between
the points and the ellipse using the ellipse definition, the numeri-
cal discrimination results denoted as NDRNM

T ;NDRSVSD
T ;NDRMVSD

T

and NDRLVSD
T in the time domain, and NDRNM

F ;NDRSVSD
T ;NDRMVSD

F

and NDRLVSD
F in the frequency domain are determined as follows.

Suppose the points PT([T12,T11]) and PF([FG,FW]) are extracted
from one heart sound. Here the ellipse models EMMVSD

T and
EMMVSD

F are taken as the examples to check whether PT([T12,T11])
and PF([FG,FW]) are inside the ellipse models (Fig. 8). According to
ds and VSD sounds. (a) In the time domain and (b) in the frequency domain.



Fig. 8. An example for the MVSD ellipse model. (a) In the time domain and (b) in the frequency domain.
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the ellipse definition and classification, the NDRMVSD
T(PT) can be

defined as

NDRMVSD
T ðPTÞ ¼

1 if kPT � F1
Tk2 þ kPT � F2

Tk2 6 2aT;

�1 if kPT � F1
Tk2 þ kPT � F2

Tk2 > 2aT;

(
ð39Þ

where F1
T and F2

T are the foci of the ellipse model EMT
MVSD plotted in

Fig. 8(a), and their coordinates are computed by

F1
T : ðTc

12 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

T � b2
T

2
q

cosðhTÞ; Tc
11 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

T � b2
T

2
q

sinðhTÞÞ;

F2
T : ðTc

12 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

T � b2
T

2
q

cosðhTÞ; Tc
11 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

T � b2
T

2
q

sinðhTÞÞ;

8><
>: ð40Þ

where ðTc
12; T

c
11Þ is the center, aT is the semi-major axis and bT is the

semi-minor axis of the ellipse model EMT
MVSD; then the NDRMVSD

F(-
PF) can be defined as

NDRMVSD
F ðPFÞ ¼

1 if kPF � F1
Fk2 þ kPF � F2

Fk2 6 2aF;

�1 if kPF � F1
Fk2 þ kPT � F2

Fk2 > 2aF;

(
ð41Þ

where F1
F and F2

F are the foci of the ellipse model EMF
MVSD plotted in

Fig. 8(b), and their coordinates are computed by

F1
F : ðFc

G þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

F � b2
F

2
q

cosðhFÞ; Fc
W þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

F � b2
F

2
q

sinðhFÞÞ;

F2
F : ðFc

G �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

F � b2
F

2
q

cosðhFÞ; Fc
W �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

F � b2
F

2
q

sinðhFÞÞ;

8><
>: ð42Þ

where ðFc
G; F

c
WÞ is the center, aF is the semi-major axis and bF is the

semi-minor axis of the ellipse model EMMVSD
F . In the same way, the

NDRNM
T ðPTÞ;NDRSVSD

T ðPTÞ and NDRLVSD
T ðPTÞ of the point PT in the ellip-

ses in the time domain can be determined, and the
NDRNM

F ðPFÞ;NDRSVSD
F ðPFÞ;NDRLVSD

F ðPFÞ;NDRLVSD
F ðPFÞ of the point PF in

the ellipses in the frequency domain can be determined. The detec-
tion result (DR) for diagnosing the heart sounds by the parameters
PT([T12,T11]) and PF([FG,FW]) is defined by

DR :

NM for NDRNM
T þNDRNM

F ¼2 ;

VSD for NDRVSD
T þNDRVSD

F ¼2 : ;

SVSD for NDRSVSD
T þNDRSVSD

F ¼2;

MVSD for NDRMVSD
T þNDRMVSD

F ¼2;

LVSD for NDRLVSD
T þNDRLVSD

F ¼2;

8><
>:

8>>>><
>>>>:

ð43Þ
4.2.3. Experimental analysis
By these EMs and the boundary curves to detect the same DSs

used in Section 4.1.3, the comparative accuracy results for NM
and VSD sounds are shown in Table 2. The comparative accuracy
results for SVSD, MVSD and LVSD are shown in Table 3. The results
in.
(1). Table 2 shows that the accuracy results for NM and VSD are
not obviously different between using the ellipse models
and the boundary curves.

(2). Table 3 shows that the performance of the ellipse models
seems to be a little better than the boundary curves.

Therefore, the ellipse models can replace the boundary curves
to diagnose heart sounds. To explain this detection procedure
much better, the VSD sounds (VSD) and normal sounds (NM) are
taken as the examples to be analyzed (Fig. 9). Fig. 9(a) shows the
VSD sounds which is collected from a female patient
(U = 12 mm) of age 1 with 7.5 kg weight. A set of the diagnostic
parameters [T12,T11] extracted at HT = 0.4 and [FG,FW] extracted
at HF = 0.2 are marked by and plotted in Fig. 9(e) and (f). It is
obvious that the plots of the parameters [T12,T11] and [FG,FW] are
both concentrated into the ellipse models of VSD and MVSD.
Therefore, this sound might be discriminated as VSD and MVSD,
which corresponds to the clinical diagnosis because U = 12 mm.
Fig. 9(c) shows the normal sound collected from a healthy woman
of age 22 with weight 49 kg. A set of the diagnostic parameters
[T12,T11] extracted at HT = 0.2 and [FG,FW] extracted at HF = 0.2
are marked by and also plotted in Fig. 9(e) and (f). It is obvious
that the plots of the parameters [T12,T11] and [FG,FW] are both con-
centrated into the ellipse models of NM. Therefore, the VSD case
might be discriminated as normal sound. Therefore, this diagnostic
method can easily help the user to understand the detected heart
sound in the time domain and in the frequency domain.
4.2.4. Clinical cases analysis
To evaluate the efficiency of the proposed method, besides the

NM sounds from three healthy males in Yamaguchi University
(in Japan) and two females in Xihua University (in China) and the
VSD sounds from patients only with VSD in the Department of Car-
diology Surgery of the Chengdu Military General Hospital of PLA
(in China), an AR, an AF, an AS, and a MS sounds are randomly se-
lected to be diagnosed. The VSD sounds include two LVSD sounds,
which are from a female patient of age 2.2 with weight 6.5 kg
(named LVSD1 (U = 19 mm)) and a male of age 2.5 with weight
7.2 kg (LVSD2 (U = 17 mm)); three MVSD sounds, which are from
a female of age 0.5 with weight 5.6 kg (MVSD1(U = 14 mm)), a
female of age 2 with weight 11 kg (MVSD2 (U = 10 mm)), and a
female of age 3 with weight 13 kg (MVSD3 (U = 7 mm)); two SVSD
sounds, which are from a female patient of age 0.4 with weight
8 kg (SVSD1 (U = 5 mm)) and a male of age 1.8 with weight
5.8 kg (SVSD2 (U = 5 mm)). The four normal sounds are collected
from a female of age 23 with weight 56 kg (NM1), a male of age
22 with weight 68 kg (NM2), a male of age 27 with weight 75 kg
(NM3), and a healthy male of age 18 with weight 70 kg (NM4).



Fig. 9. Examples for the heart sound detection procedure. (a) The envelope ET and (b) the envelope EF of the VSD. (c) The envelope ET and (d) the envelope EMF of the NM. The
corresponding diagnostic graphic representations of [T12,T11] obtained from VSD at HT = 0.4 and from NM at HT = 0.2 are displayed in (e) and [FG,FW] obtained from VSD at
HF = 0.2 and from NM at HF = 0.2 are shown in (f).
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The AR, AF, AS, and MS sounds collected from an online clinical
training web site are denoted AR, AF, AS, and MS, respectively.
The features extracted from LVSD1, LVSD2, MVSD1, MVSD2,
MVSD3, SVSD1, SVSD2, NM1, NM2, NM3, NM4, AR, AF, AS, and
MS are shown in Fig. 10, and the sound discrimination results
are shown as Table 4. Here, MVSD1 is taken as an example to intro-
duce the performance using [T12,T11]s and [FG,FW]; the results of
MVSD1 in Fig. 10 show that

MVSD1 :
the plots of ½T12;T11�are distributed within : VSD;MVSD and NM;

the plots of ½FG;FW�are distributed within : VSD;MVSD and LVSD:

�
ð44Þ

Therefore, MVSD1 might be diagnosed as in the NM, VSD and MVSD
classes using only [T12,T11], and using only [FG,FW] it might be diag-
nosed as the VSD, LVSD and MVSD classes. However, using [T12,T11]
and [FG,FW] it might be diagnosed as VSD and MVSD, which corre-
sponds to the clinical diagnosis and its detection results denoted as
Fig. 10. Classification models and the distrib
VSD:MVSD, shown in Table 4. Of course, sound is very difficult to be
diagnosed, and problems will occur in this diagnostic system, like
for NM2. The results of NM2 in Fig. 10 show that

NM2 :
the plots of ½T12; T11� are distributed within : NM;VSD and SVSD;
the plots of ½FG; FW� are distributed within : NM;VSD and LVSD:

�
ð45Þ

Therefore, NM2 might be diagnosed as in the NM and VSD classes
(denoted as NM:VSD), which is in keeping with the diagnosis result
that the classification accuracy between NM and VSD is 98.4% not
100%. Similarly, the detection results corresponding to Fig. 10 are
summarized in Table 4. Furthermore, the analysis results for the
typical clinical AR, AS, MR, AF sounds plotted in Fig. 10 show that
they are easy to diagnose, and are not mistaken as VSD sounds,
which are contrary to the results that the VSD was incorrectly
classified as aortic stenosis (AS) or aortic regurgitation (AR), as
ution of heart sound feature parameters.



Table 4
Discrimination results from the numerical discrimination results.

HS NM VSD LVSD MVSD SVSD DR

NDRT NDRF NDRT NDRF NDRT NDRF NDRT NDRF DNRT NDRF

LVSD1(U = 19 mm) �1 �1 1 1 1 1 �1 1 �1 �1 VSD:LVSD
LVSD2(U = 17 mm) �1 1 1 1 1 1 1 �1 �1 �1 VSD:LVSD
MVSD1(U = 14 mm) 1 �1 1 1 �1 1 1 1 �1 �1 VSD:MVSD
MVSD2(U = 10 mm) �1 �1 1 1 �1 �1 1 1 �1 �1 VSD:MVSD
MVSD3(U = 7 mm) �1 �1 1 1 �1 �1 1 1 �1 1 VSD:MVSD
SVSD1(U = 5 mm) �1 �1 1 1 �1 �1 1 �1 1 1 VSD:SVSD
SVSD2(U = 5 mm) �1 �1 1 1 �1 �1 �1 �1 1 1 VSD:SVSD
NM1 1 1 �1 �1 �1 �1 �1 �1 �1 �1 NM
NM2 1 1 1 1 �1 1 �1 �1 1 �1 NM:VSD
NM3 1 1 1 1 �1 �1 �1 �1 1 �1 NM:VSD
NM4 1 1 1 �1 �1 �1 1 �1 �1 �1 NM
AF �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 -
AR 1 �1 1 �1 �1 �1 �1 �1 1 �1 -
AS �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 -
MS �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 -

S. Sun et al. / Expert Systems with Applications 41 (2014) 1769–1780 1779
summarized in Higuchi et al. (2006). Therefore, the proposed meth-
od might be efficient to discriminate VSD sounds.
5. conclusion

This study proposed the feature extraction and classification
boundary curve model diagnostic method, which was useful for
detecting VSD and three types of VSD sounds (SVSD, MVSD and
LVSD). In the time domain, the features [T12,T11] were extracted
from the envelope ET for HS based on the Viola integral method.
In the frequency domain, the features [FG,FW] were extracted from
the envelope EF for every cardiac cycle sound, which was seg-
mented from heart sounds based on a novel MWHT method. To
evaluate the detection ability and build an easily understandable
detection system for the features [T12,T11] and [FG,FW], the bound-
ary curves based on the SVM technique were generated for the DSs
consisting of [T12,T11] and [FG,FW]. Furthermore, to simplify these
boundary curves, based on their shapes, a least squares method
was employed to build ellipse models for curves. Finally, the effi-
ciency of the proposed method was validated by the classification
accuracy of the discrimination abilities for VSD sounds. Mor eover,
to validate the usefulness of the proposed method, besides normal
and VSD sounds, AF, AR, AS and MS heart sounds were evaluated.
Therefore, the proposed method perhaps provided an efficient
way to obtaining the efficient range of features which character-
ized different types of heart sounds.
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