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Abstract: Humans can easily recognize others’ facial expressions. Among the brain substrates that
enable this ability, considerable attention has been paid to face-selective areas; in contrast, whether
motion-sensitive areas, which clearly exhibit sensitivity to facial movements, are involved in facial
expression recognition remained unclear. The present functional magnetic resonance imaging (fMRI)
study used multi-voxel pattern analysis (MVPA) to explore facial expression decoding in both face-
selective and motion-sensitive areas. In a block design experiment, participants viewed facial expres-
sions of six basic emotions (anger, disgust, fear, joy, sadness, and surprise) in images, videos, and
eyes-obscured videos. Due to the use of multiple stimulus types, the impacts of facial motion and eye-
related information on facial expression decoding were also examined. It was found that motion-
sensitive areas showed significant responses to emotional expressions and that dynamic expressions
could be successfully decoded in both face-selective and motion-sensitive areas. Compared with static
stimuli, dynamic expressions elicited consistently higher neural responses and decoding performance
in all regions. A significant decrease in both activation and decoding accuracy due to the absence of
eye-related information was also observed. Overall, the findings showed that emotional expressions
are represented in motion-sensitive areas in addition to conventional face-selective areas, suggesting
that motion-sensitive regions may also effectively contribute to facial expression recognition. The
results also suggested that facial motion and eye-related information played important roles by carry-
ing considerable expression information that could facilitate facial expression recognition. Hum Brain
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INTRODUCTION

Facial expressions are important for social interactions
as they convey information about others’ emotions. Since
humans can quickly and effortlessly recognize others’
facial expressions, a key question is which brain regions
are involved in facial expression recognition.

Functional magnetic resonance imaging (fMRI) studies
have identified a network of cortical areas involved in face
processing. Among these areas, the occipital face area
(OFA) in the inferior occipital gyrus [Gauthier et al., 2000;
Ishai et al., 2005], the fusiform face area (FFA) in the fusi-
form gyrus [Grill-Spector et al., 2004; Haxby et al., 2000;
Rotshtein et al., 2005; Yovel and Kanwisher, 2004], and the
face-selective area in the posterior superior temporal sul-
cus (pSTS) [Allison et al., 2000; Gobbini et al., 2011; Haxby
et al., 2000; Lee et al., 2010; Winston et al., 2004] together
constitute the “core system” [Gobbini and Haxby, 2007;
Haxby et al., 2000]. These three face-selective areas have
been widely studied for their role in facial expression per-
ception and are considered key regions for the processing
of facial expressions [Fox et al., 2009b; Ganel et al., 2005;
Harry et al., 2013; Hoffman and Haxby, 2000; Kawasaki
et al., 2012; Monroe et al., 2013; Said et al., 2010; Sato
et al., 2004]. Previous fMRI studies mainly used static
expression images as stimuli [Adolphs, 2002; Andrews
and Ewbank, 2004; Gur et al., 2002; Murphy et al., 2003;
Phan et al., 2002]. However, facial expressions are dynamic
in natural social contexts, and facial motion conveys addi-
tional information about temporal and structural facial
properties [Harwood et al., 1999; Sato et al., 2004]. Recent
studies have suggested that the use of dynamic stimuli
may be more appropriate when investigating the
“authentic” mechanisms of facial expression recognition
that people use in their daily life [Johnston et al., 2013;
Trautmann et al., 2009]. These studies showed enhanced
brain activation patterns and found that in addition to the
conventional face-selective areas, motion-sensitive areas in
the human motion complex (V5f) and pSTS are also sensi-
tive to facial motion [Foley et al., 2011; Furl et al., 2013,
2015; Pitcher et al., 2011; Schultz et al., 2013; Schultz and
Pilz, 2009]. These findings provided the neural substrates
for further study of facial expression recognition.

The identification of these face-selective and motion-
sensitive areas has led to the question of which brain
regions are involved in facial expression recognition as
well as to explore the roles of these regions in expression
decoding. Multi-voxel pattern analysis (MVPA) provides a
method to examine whether expression information could
be decoded from the distributed patterns of activity

evoked in a specific brain area [Mahmoudi et al., 2012;
Norman et al., 2006; Williams et al., 2007]. Using MVPA,
Said et al. [2010] found the successful classification of
facial expressions in the STS, while the role of the FFA
was tested by Harry et al. [2013]. As these studies focused
only on single regions, Wegrzyn et al. [2015] directly com-
pared classification rates across the brain areas proposed
by Haxby’s model [Haxby et al., 2000]. However, the
study used only a subset of the basic emotions and only
images as stimuli; the role of motion-related cues in facial
expression decoding was not considered. Consequently,
comprehensively evaluating the decoding performance for
both static and dynamic facial expressions of the full set of
six basic emotions would be meaningful. Moreover, emo-
tional expressions could be represented in the motion-
sensitive areas (Mf areas) of macaques [Furl et al., 2012],
suggesting that human motion-sensitive areas might also
represent expression information. Hence, it is necessary to
investigate the decoding performance of motion-sensitive
areas in addition to that of the conventional face-selective
areas. Additionally, some psychologists who have investi-
gated gaze fixation and the weights of different facial com-
ponents in facial expression perception found a preference
for the expressive information conveyed by the eyes in
Asians [Jack et al., 2009, 2012; Kret et al., 2013; Yuki et al.,
2007]. Their findings motivated us to explore the particular
impact of the eyes in facial expression decoding.

The present fMRI study explored whether face-selective
and motion-sensitive areas effectively contributed to facial
expression recognition. We hypothesized that because
motion-sensitive areas clearly respond to facial motion,
facial expression information may also be represented in
these regions. To address this question, we used a block
design experiment and collected neural activity while par-
ticipants viewed facial expressions of the six basic emotions
(anger, disgust, fear, joy, sadness, and surprise) expressed
in images, videos, and obscured-eye videos. Because multi-
ple stimulus types were included, we also investigated the
impacts of facial motion and eye-region information on
facial expression decoding. Regions of interest (ROIs) were
identified using a separate localizer. We conducted univari-
ate analysis and MVPA to examine neural responses and
decoding performance for facial expressions in all ROIs.

MATERIALS AND METHODS

Participants

Twenty healthy, right-handed volunteers (10 females;
average age: 22.25 years; range: 20–24 years) with no
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history of neurological or psychiatric disorders took part in
the study. All participants had normal or corrected-to-
normal vision and provided written informed consent
before the experiment. The study was approved by the Insti-
tutional Review Board (IRB) of Tianjin Key Laboratory of
Cognitive Computing and Application, Tianjin University.
Data of two participants were discarded from further analy-
sis due to excessive head movement during scanning.

Experimental Stimuli

The facial stimuli used in this study were taken from
the Amsterdam Dynamic Facial Expression Set [Van der
Schalk et al., 2011]. Video clips of 12 different individuals
(6 male and 6 female) displaying expressions of the six
basic emotions (anger, disgust, fear, joy, sadness, and sur-
prise) were chosen as the dynamic stimuli (see Fig. 1A).
All videos were cropped to 1,520 ms to retain the transi-
tion from a neutral expression to the expression apex, and
the final still images depicting the apex expressions were
used as the static stimuli. To explore the specific role of
eye-related information in facial expression decoding, we
masked the eye region in the dynamic facial videos by
blurring to create the obscured stimuli (with Adobe Pre-
miere) [Engell and McCarthy, 2014; Stock et al., 2011;
Tamietto et al., 2009]. Exemplar obscured stimuli are
shown in Figure 1B. All videos and images were con-
verted into grayscale.

Decoding Experiment

There were three conditions in our decoding experi-
ment: (1) static expressions, (2) dynamic expressions, and
(3) dynamic expressions with obscured eye-region. Each
condition included all six basic expressions: anger, disgust,
fear, joy, sadness, and surprise. The experiment used a
block design, with four runs. In each run, the participants
viewed 18 blocks (3 conditions 3 6 emotions) in a pseudo-
random order. Figure 1C shows the schematic representa-
tion of the employed paradigm. Each run began with a fix-
ation cross (10 s), which was followed by a stimulus block
(the same condition and expression) and then a 4-s button
press task. Successive stimulus blocks were separated by
10 s fixation cross. In each stimulus block, 12 expression
stimuli were presented (each for 1,520 ms) with an inter-
stimulus interval (ISI) of 480 ms. During the button press
task, the participants were asked to choose between six
basic emotions by pressing a button. The total duration of
the decoding experiment was 45.6 min, with each run last-
ing 11.4 min. The stimuli were presented using E-Prime
2.0 Professional (Psychology Software Tools, Pittsburgh,
PA, USA).

After scanning, participants were required to complete a
supplementary behavioral experiment in which they made
speeded categorization of emotional category for each face
stimulus in the decoding experiment and rated the

emotional intensity on a 1–9 scale. Each stimulus was pre-
sented once in a random order, with the same duration as
in the fMRI experiment.

fMRI Data Acquisition

fMRI data were collected at Yantai Affiliated Hospital of
Binzhou Medical University using a 3.0-T Siemens scanner
with an eight-channel head coil. Foam pads and earplugs
were used to reduce head motion and scanner noise. T2*-
weighted images were acquired using a gradient echo-
planar imaging (EPI) sequence (TR 5 2,000 ms, TE 5 30 ms,
voxel size 5 3.1 3 3.1 3 4.0 mm3, matrix size 5 64 3 64,
slices 5 33, slice thickness 5 4 mm, slice gap 5 0.6 mm). T1-
weighted anatomical images were acquired with a three-
dimensional magnetization-prepared rapid-acquisition gra-
dient echo (3D MPRAGE) sequence (TR 5 1,900 ms,
TE 5 2.52 ms, TI 5 1,100 ms, voxel size5 1 3 1 3 1 mm3,
matrix size 5 256 3 256). The participants viewed the stim-
uli through the high-resolution stereo 3D glasses of the
VisuaStim Digital MRI Compatible fMRI system.

Data Preprocessing

Functional images were preprocessed with SPM8 soft-
ware (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
). For each run, the first 5 volumes were discarded to mini-
mize the effects of magnetic saturation. The remaining
images were corrected for slice timing and head motion,
normalized in the standard Montreal Neurological Insti-
tute (MNI) space using anatomical image unified segmen-
tation, subsampled at an isotropic voxel size of 3 mm. The
normalized data were smoothed with a 4-mm full-width
at half-maximum Gaussian kernel. In subsequent analyses,
the smoothed and unsmoothed data were used separately
in the univariate and pattern classification analyses.

Localization of Face-Selective and

Motion-Sensitive Areas

For the purpose of decoding, we identified face-selective
and motion-sensitive areas using a separate localizer run.
The total duration of the localizer was 7.8 min. During this
scan, the participants viewed video clips or static images
of objects and faces presented in separate blocks. Each
condition appeared three times in a pseudo-random order,
resulting in 12 blocks total. In each block, 14 stimuli (12
novel and 2 repeated) were presented, each of which was
displayed for 1,520 ms, with an ISI of 480 ms. The partici-
pants performed a “one-back” task by pressing the button
whenever two identical presentations appeared consecu-
tively. There was some overlap between the face stimuli
used in the localizer and decoding experiment runs. The
object stimuli were chosen from materials used in a previ-
ous study [Fox et al., 2009a]. All selected objects displayed
types of motion that did not create large transitions in
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position so that the dynamic changes in the objects could
be compared with those in the faces. The preprocessing
procedures were similar to those used for the decoding
experiment (see Data preprocessing). At the first level,

four effects of interest were modeled: dynamic face, static
face, dynamic object, and static object. Six head motion
parameters were regressed as covariates to correct for
movement-related artifacts, and low-frequency drifts were

Figure 1.

Exemplar facial stimuli and schematic representation of the

employed paradigm. (A) All facial stimuli were taken from the

ADFES database. Twelve different individuals (6 males) displaying

expressions of the 6 basic emotions (anger, disgust, fear, joy,

sadness, and surprise) were chosen. (B) Exemplar obscured

stimuli. (C) Schematic representation of the decoding

experiment. A cross was presented for 10 s before each block,

and then 12 expression stimuli (all in same condition and

expression) appeared. Finally, the participants completed a but-

ton task to indicate their discrimination of the expression they

had seen in the previous block. [Color figure can be viewed at

wileyonlinelibrary.com]
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removed with a high-pass filter of 1/128 Hz. Face-selective
and motion-sensitive areas were then functionally identi-
fied by contrasting the average response to dynamic and
static faces versus the average response to dynamic and
static objects and by contrasting dynamic versus static
faces separately.

Univariate Analysis

For each participant, we first examined the mean
response profiles to static, dynamic, and obscured eye
dynamic facial expressions in each face-selective and
motion-sensitive ROI. Averaged time courses across voxels
in each ROI were extracted for each condition using the
MarsBaR software package (http://marsbar.sourceforge.
net/, Brett et al. [2002]). The estimated signal change data
were then subjected to further statistical analysis.

Multivoxel Pattern Analysis

We used MVPA to examine whether facial expressions
could be decoded from the neural activation patterns in
each ROI. Our decoding strategy was to perform a six-
way expression classification separately for the static,
dynamic and obscured eye expression conditions. MVPA
was conducted on the preprocessed data (unsmoothed)
from the decoding experiment. Raw intensity values for all
voxels within an ROI were extracted and normalized with
a z-score transformation function. This procedure was
used to remove any between-run differences due to base-
line shifts and was applied for the full-run voxel time
course (for each run separately). To account for hemody-
namic lag, the time courses were shifted 2 TRs (4 s). With
12 trials in each block, across the 4 runs, there were 12 3

4 5 48 samples for each expression in each condition
[Axelrod and Yovel, 2012; Song et al., 2011; Wolbers et al.,
2011]. We employed a lib-SVM classifier with leave-one-
run-out cross-validation, and then the results were aver-
aged. Feature selection was executed using ANOVA,
yielding a P value for each voxel that expressed the proba-
bility that a given voxel’s activity varied significantly
between conditions over the course of the experiment. The
ANOVA analysis was performed only on the training data
to avoid peeking, and any voxel that did not pass a
threshold (P< 0.05) was not used for further classification
analysis. To ensure that the classification scheme was val-
id, the same cross-validation schemes were carried out for
1,000 random shuffles of class labels, which generalized
with chance performance. To evaluate decoding perfor-
mance, the significance of the classification results was
established as a group level one-sample t-test above the
chance performance (0.1667) and was FDR corrected for
the number of ROIs.

RESULTS

Localization of ROIs

By contrasting faces versus objects, we identified conven-
tional face-selective areas, including the bilateral FFA, OFA,
and a posterior part of the right STS, that responded more to
faces than to non-face stimuli. We also identified motion-
sensitive areas that exhibited sensitivity to facial movements,
as reported in recent studies, by contrasting dynamic versus
static facial expressions [Furl et al., 2012, 2013, 2015]. We
found bilateral areas (V5f) sensitive to facial motion within
human hMT1/V5 [Foley et al., 2011; Furl et al., 2013, 2015;
Pitcher et al., 2011; Schultz et al., 2013; Schultz and Pilz, 2009].
Consistent with previous studies [Foley et al., 2011; Furl et al.,
2013; Schultz et al., 2013], we also identified an area that
exhibited motion sensitivity to faces in the right posterior
STS. This motion-sensitive area pSTS2 partially overlapped
with the identified face-selective area pSTS1, and further
analysis was conducted on both regions to investigate their
facial expression decoding performance. Figure 2 shows the
results of group-level analysis of all ROIs (P< 0.001, uncor-
rected); the MNI coordinates, peak intensity, and contrasts
used are described in Table I .

Decoding Static and Dynamic Facial Expressions

in Face-Selective and Motion-Sensitive Areas

We examined both neural responses and classification accu-
racies for static and dynamic facial expressions. Figure 3A
and B show the results in all 5 ROIs, and the inferential statis-
tical results are summarized in Table II. In the univariate
analysis, paired t-test (one-tailed) suggested that all the face-
selective and motion-sensitive areas showed greater responses
to dynamic relative to static facial expressions, and this
increase in response for dynamic over static was more obvi-
ous in the pSTS1, pSTS2, and V5f. One further comparison
for dynamic expressions showed that responses in the
motion-sensitive pSTS2 were significantly higher than those
in the face-selective pSTS1 (t(17) 5 3.26, P 5 0.0023). In the
decoding analysis, we computed the average classification
results over the six expressions separately for classifiers that
were trained and tested with either static or dynamic items.
We found that classification accuracies for the dynamic facial
expressions were significantly above chance level in all five
ROIs (one-tailed one-sample t-test against chance performance
of 0.1667), and paired t-test (one-tailed) showed that all of
these regions exhibited significantly higher decoding accura-
cies for dynamic compared with static facial expressions.

In this part, to further investigate the role of the
domain-general motion-sensitive areas in the decoding of
facial expressions, we also identified motion-sensitive
areas that were not necessarily face specific by contrasting
dynamic versus static objects from the localizer. We identi-
fied the bilateral STS (right MNI: 60, 233, 12; left MNI:
251, 242, 12) and hMT1/V5 (right MNI: 54, 269, 0; left
MNI: 245, 269, 6) and then calculated the neural responses
and decoding performance for static and dynamic facial
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expressions based on these regions. These results are shown

in Table III and Figure 4. Consistent with our previous find-

ings, in these not necessarily face-specific motion-sensitive

areas, classification accuracies for dynamic expressions

were also significantly above chance, and both responses

and classification accuracies were significantly higher for

dynamic compared with static facial expressions.
In summary, we could robustly decode dynamic facial

expressions in both face-selective and motion-sensitive

areas. In all ROIs, we found consistently higher responses
and classification accuracies for dynamic than for static
facial expressions.

Role of Eye-Related Information in Facial

Expression Recognition

To further estimate the role of the eyes in facial expres-
sion decoding, obscured stimuli were created by blurring

TABLE I. MNI coordinates, peak intensity, and contrasts used for each ROI

Functional ROIs

MNI coordinates

Peak intensity Contrastx y z

FFA
L 245 251 224 4.57 Face(d 1 s)> object(d 1 s)
R 42 245 221 6.05 Face(d 1 s)> object(d 1 s)
OFA
L 227 296 212 5.16 Face(d 1 s)> object(d 1 s)
R 42 275 215 7.88 Face(d 1 s)> object(d 1 s)
pSTS1
R 48 236 6 7.58 Face(d 1 s)> object(d 1 s)
pSTS2
R 51 233 3 5.62 Face(d)> face(s)
V5f
L 254 269 6 9.49 Face(d)> face(s)
R 48 263 9 9.10 Face(d)> face(s)

FFA, fusiform face area; OFA, occipital face area; pSTS1, face-selective area in the posterior superior temporal sulcus (pSTS) ; pSTS2,
motion-sensitive area in the pSTS; V5f, motion-sensitive area within human hMT1/V5; L, left; R, right; d, dynamic; s, static.

Figure 2.

Group-level ROI analysis. (A) ROI results (P< 0.001, uncorrect-

ed) from the localizer, showing voxels that were more respon-

sive to faces versus objects and to facial motion. FFA, fusiform

face area; OFA, occipital face area; pSTS1, face-selective area in

the posterior superior temporal sulcus (pSTS); pSTS2, motion-

sensitive area in the pSTS; V5f, motion-sensitive area within

human hMT1/V5. (B) Face selectivity and motion sensitivity to

faces overlap in the pSTS (P< 0.001, uncorrected). Red repre-

sents face-selective voxels; green represents voxels sensitive to

facial motion; yellow represents their overlap. [Color figure can

be viewed at wileyonlinelibrary.com]
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the eye region in the dynamic facial expressions. We
examined both the mean fMRI responses and the decoding
performance for complete and obscured stimuli. We
hypothesized that, because the absence of eye-region infor-
mation was the only variable that distinguished the com-
plete and obscured expressions, if the participants did not
focus on the eyes when recognizing facial expressions (i.e.,
eye-related information did not play an important role),
the response patterns evoked by the obscured stimuli

would not be largely distinct from those evoked by the
complete stimuli. A significant difference in response and
expression decoding performance would instead suggest
that eye-region information played an important role. In
the univariate analysis, we compared the percent signal
change for complete and obscured stimuli. In addition, in
the decoding analysis, we calculated the classification
accuracies for the complete and obscured stimuli separate-
ly and then compared the accuracies for each stimulus
type with chance level and with each other.

The neural responses and classification rates for each ROI
are shown in Figure 5A and B, and the inferential statistical
results are summarized in Table IV. Paired t-test (one-tailed)
revealed that compared with those for the complete expres-
sions, the response signals for the obscured expressions
were significantly lower in all five regions except V5f. Con-
sistently, all five ROIs exhibited significantly lower classifi-
cation accuracies for the obscured compared with the
complete stimuli.

In summary, when the eye region information was
obscured, we found significantly decreased neural responses
in all regions except V5f and significantly lower decoding
accuracies in all ROIs.

Postscanning Behavioral Results

After scanning, participants made speeded classification
of emotional category and rated the emotional intensity
for each face stimulus. To maintain continuity across the
results, we included behavioral data for the 18 participants
who were included in the previous decoding analysis. We
compared classification accuracies, intensity ratings and
reaction times between the static and dynamic expressions
and between the complete and obscured expressions to
examine potential differences. Figure 6 shows the behav-
ioral results, and the statistical results of the comparisons
are summarized in Table V. We found that the participants
showed higher classification accuracies for dynamic com-
pared with static expressions and that the intensity of the
emotion they perceived significantly decreased when
information about the eyes was missing. For reaction
times, there were no significant differences. In the ques-
tionnaires conducted after the experiment, the participants
also reported that it was much easier to recognize the
expressions in the dynamic stimuli compared with the
static and obscured stimuli.

In sum, the behavioral measures were consistent with
the fMRI results, showing that facial motion cues facilitate
expression recognition and that eye-related information
plays an important role in the recognition of facial
expressions.

DISCUSSION

The main purpose of this study was to explore the roles
of face-selective and motion-sensitive areas in the

Figure 3.

Average percent signal changes (A) and classification rates (B)

for static and dynamic facial expressions of the six basic emo-

tions in each ROI. The black line indicates chance level, and all

error bars indicate the SEM. * indicates statistical significance

with one-sample or paired t-test, P< 0.05 (FDR corrected for

number of ROIs). In all five ROIs, classification accuracies for

dynamic facial expressions were significantly above chance level,

and both the activation and classification performance for the

dynamic expressions were significantly higher than those for the

static facial expressions.
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recognition of facial expressions. To address this issue, we
employed a block design experiment and conducted uni-
variate analysis and MVPA. We also examined the impact
of facial motion and eye-region information on facial
expression decoding by employing multiple types of
expression stimuli. Our results showed that motion-
sensitive areas also responded to expressions and that the
dynamic facial expressions could be successfully decoded
in both face-selective and motion-sensitive areas. We
found that the dynamic expressions, which are most com-
monly experienced in the natural environment, elicited
higher responses and classification accuracies than static
expressions in all ROIs. We also observed a significant
decrease in both responses and decoding accuracies due to
the absence of eye-related information.

Motion-Sensitive Areas Represent Expression

Information in Addition to Conventional Face-

Selective Areas

We examined the fMRI responses and the decoding per-
formance for facial expressions in both face-selective and
motion-sensitive areas. Our analysis suggests that

expression information is represented not only in face-
selective but also in motion-sensitive areas.

Neuroimaging studies of facial expression perception
have focused on face-selective areas, especially the core
face network, which consists of the OFA for early face per-
ception [Rotshtein et al., 2005] and for the processing of
structural changes in faces [Fox et al., 2009b], the FFA for
the processing of facial features and identity [Fox et al.,
2009b; Ganel et al., 2005] and the pSTS for the processing
of changeable features such as gaze or emotional expres-
sions [Hoffman and Haxby, 2000]. Previous fMRI studies
have showed that these face-selective areas are involved in
facial expression processing and exhibit stronger responses
to dynamic than static stimuli [Foley et al., 2011; Fox et al.,
2009a; Lee et al., 2010; Pitcher et al., 2011; Sato et al., 2004;
Schultz and Pilz, 2009]. Our results are consistent with
these findings and in addition to the higher responses
found in previous studies, further revealed significantly
higher decoding accuracies for dynamic than static facial
expressions through MVPA. Together, these findings con-
firm the importance of face-selective areas, which encode
expression information, in facial expression recognition.

Moreover, our study suggests a role for motion-sensitive
areas in the recognition of facial expressions. A number of
recent studies have found that motion-sensitive areas

TABLE II. Statistical results of the analysis of response and decoding accuracy of static and dynamic facial expres-

sions in each ROI

%signal change Decoding accuracy

Video> Image Image>Chance Video>Chance Video> Image

t(17) P t(17) P t(17) P t(17) P

FFA 4.853 <0.001* 21.186 0.847 2.595 0.009* 2.396 0.014*
OFA 3.487 0.001* 21.050 0.846 2.401 0.014* 2.603 0.009*
pSTS1 8.021 <0.001* 20.430 0.664 2.954 0.004* 2.116 0.025*
pSTS2 7.342 <0.001* 20.671 0.744 3.453 0.002* 2.819 0.006*
V5f 14.384 <0.001* 0.237 0.408 3.739 <0.001* 2.504 0.011*

One-sample and paired t-test of percent signal change and decoding accuracies for static and dynamic facial expressions in each ROI;
one-tailed. *Significant P values (FDR corrected for number of ROIs). In all five ROIs, classification accuracies for dynamic facial expres-
sions were significantly above chance; both the activation and classification performance were significantly higher for the dynamic
expressions than for the static facial expressions.

TABLE III. Statistical results of the analysis of response and decoding accuracy of static and dynamic facial expres-

sions in object-defined motion-sensitive areas

%Signal change Decoding accuracy

Video> Image Image>Chance Video>Chance Video> Image

t(17) P t(17) P t(17) P t(17) P

STS 6.457 <0.001* 0.385 0.353 3.589 0.001* 2.123 0.024*
hMT1/V5 13.345 <0.001* 0.347 0.366 3.393 0.002* 2.300 0.017*

One-sample and paired t-test of percent signal change and decoding accuracies for static and dynamic facial expressions in object-
defined ROIs; one-tailed. *Significant P values (FDR corrected for number of ROIs). In both object-defined motion-sensitive ROIs, classi-
fication accuracies for dynamic expressions were significantly above chance, and both activation and classification performance were
significantly higher for dynamic compared with static facial expressions.
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within pSTS and human motion complex showed strong
responses to dynamic facial stimuli [Foley et al., 2011; Furl
et al., 2013; Furl et al., 2015; Pitcher et al., 2011; Schultz
et al., 2013; Schultz and Pilz, 2009]. By employing contrast
identical to that used in previous studies [Furl et al., 2012,
2013, 2015], we identified these motion-sensitive areas that
responded to facial motion. Our results were not only in
line with previous findings but also further revealed the
successful decoding of dynamic facial expressions in these
motion-sensitive areas. Furthermore, the results for the
object-defined motion-sensitive areas, which were not nec-
essarily face specific, provided additional support for our

analysis and revealed the expression decoding perfor-
mance of relatively domain-general motion-sensitive areas.
Taken together, our results suggest that expression infor-
mation need not be represented exclusively by face-
selective areas that encode facial attributes and reflect spe-
cialization for face selectivity; relatively domain-general
motion-sensitive areas, which respond to various visual
motions and are not necessarily face specific, may also
effectively contribute to human facial expression recogni-
tion. Our findings are consistent with observations in
macaque [Furl et al., 2012] that suggest that macaque
motion-sensitive areas also represent expression informa-
tion. Moreover, we also detected overlapping face-selective

Figure 5.

Average percent signal changes (A) and classification rates (B)

for the obscured compared with the complete expressions in all

ROIs. The black line indicates chance level, and all error bars

indicate the SEM. * indicates statistical significance with one-

sample or paired t-test, P< 0.05 (FDR corrected for number of

ROIs). Activations for the obscured expressions were significant-

ly lower than those for the complete expressions in all ROIs

except V5f, and in all ROIs, the classification accuracies for the

obscured expressions were significantly reduced.

Figure 4.

Average percent signal changes (A) and classification rates (B)

for static and dynamic facial expressions in object-defined

motion-sensitive ROIs. The black line indicates chance level, and

all error bars indicate the SEM. * indicates statistical significance

with one-sample or paired t-test, P< 0.05 (FDR corrected for

number of ROIs). In both object-defined ROIs, classification

accuracies for dynamic facial expressions were significantly above

chance level, and both the activation and classification perfor-

mance were significantly higher for the dynamic compared with

the static facial expressions.
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and motion-sensitive voxels in the pSTS [Furl et al., 2013],
revealing that pSTS could represent both facial attributes
and facial motion information in the processing of facial
expressions. Together with the successful decoding of
expression information, our study further corroborates the
key role of the pSTS in facial expression recognition.

Facial Motion Facilitates the Decoding of Facial

Expressions

We compared neural responses and decoding perfor-
mance between static and dynamic facial expressions to
explore the impact of facial motion in the recognition of
facial expressions. We found consistent enhancement of
activation and decoding performance for dynamic com-
pared with static facial expressions in all ROIs. In social
communication, facial expressions are dynamic; moving
depictions of facial expression are more ecologically valid
than their static counterparts [Arsalidou et al., 2011; Fox
et al., 2009a; Sato et al., 2004; Schultz and Pilz, 2009; Traut-
mann et al., 2009]. Behavioral studies have also found an
advantage in the recognition of dynamic versus static
facial expressions [Ambadar et al., 2005; Cunningham and
Wallraven, 2009; Wehrle et al., 2000], and fMRI studies
have demonstrated enhanced activation patterns for
dynamic versus static facial stimuli [Arsalidou et al., 2011;
Fox et al., 2009a; Lee et al., 2010; Pitcher et al., 2011; Sato
et al., 2004; Schultz et al., 2013; Schultz and Pilz, 2009;
Trautmann et al., 2009]. Our results were completely con-
sistent with these findings, revealing increased responses
to dynamic relative to static facial expressions due to facial
motion. Moreover, it has been suggested that dynamic
facial expressions might provide some form of information
that is available only over time, which could facilitate the
facial expression recognition [Cunningham and Wallraven,
2009]. The results of our decoding analysis revealed the
important role of facial motion in the decoding of facial
expressions and thus provide additional support for this

idea. We found successful decoding of dynamic facial
expressions and significantly higher decoding accuracies
for dynamic compared with static expressions. Combined
with previous findings, our results suggest that motion-
related cues transmit expression information that facilitates
facial expression decoding.

Eye-Region Information Plays an Important Role

in Facial Expression Recognition

A number of previous behavior, eye movement and
electrophysiological studies have indicated that the eyes
play an important role in face perception [Jack et al., 2009,
2012; Kret et al., 2013; Nemrodov et al., 2014; Yuki et al.,
2007]. Moreover, Asian observers were found to prefer
eye-related expressive information, as they persistently fix-
ated the eye region and strongly focused on the eyes
when categorizing others’ facial expressions [Jack et al.,
2009, 2012; Yuki et al., 2007]. We obtained compatible find-
ings through our analysis. Compared with complete
expressions, when the eye region was obscured, univariate
analysis showed significantly decreased neural responses
in all regions except V5f, and MVPA revealed significantly
reduced decoding accuracies in all regions. These results
suggest that the response patterns evoked by the obscured
stimuli were largely distinct from those evoked by the
complete facial expressions. Neural response significantly
decreased and the available information for facial expres-
sion decoding contained therein significantly reduced due
to the absence of eye-related information. Although the
decrease in response signals for obscured stimuli was not
significant in V5f, possibly because this region is located
within the human motion complex that is sensitive to visu-
al motion [Furl et al., 2013, 2015; Schultz et al., 2013], sig-
nificantly reduced decoding accuracies were observed,
suggesting that the absence of eye-region information
caused a significant decrease of information that available
for facial expression decoding even when the motion

TABLE IV. Statistical results of the analysis of response and decoding accuracy of complete and eyes-obscured

expressions in each ROI

%Signal change Decoding accuracy

Complete>
Obscured

Complete>
Chance

Obscured>
Chance

Complete>
Obscured

t(17) P t(17) P t(17) P t(17) P

FFA 2.215 0.020* 2.595 0.009* 0.880 0.196 2.647 0.008*
OFA 4.643 <0.001* 2.401 0.014* 21.158 0.869 2.800 0.006*
pSTS1 2.236 0.019* 2.954 0.004* 1.567 0.068 2.277 0.018*
pSTS2 2.188 0.021* 3.453 0.002* 1.668 0.057 2.114 0.025*
V5f 0.403 0.346 3.739 <0.001* 1.719 0.052 2.113 0.025*

One-sample and paired t-test of percent signal change and decoding accuracies for complete and eye-region obscured expressions in
each ROI; one-tailed. *Significant P values (FDR corrected for number of ROIs). Activations for the obscured expressions were signifi-
cantly lower than those for the complete expressions in all ROIs except V5f, and the classification accuracies for the obscured expres-
sions were significantly reduced in all ROIs.
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information contained in the obscured stimuli might not
have significantly differed from that contained in the com-
plete stimuli. To summarize, our results suggest that the
eye region, which conveys expression information pre-
ferred by Asians, plays an important role in facial expres-
sion recognition.

In our current study, due to the number of conditions
and expressions under investigation and taking into
account scanning time and the participants’ comfort, there
were 48 samples for each expression in each condition.
The inclusion of additional samples for each condition
could further improve the implementation of the classifica-
tion scheme and boost the accuracy; this possibility will be
further examined in future studies. In addition, future
studies with more samples for each expression could be

Figure 6.

Postscanning behavioral performance. (A) classification rates, (B) perceived emotional intensity, (C)

reaction times for expression classification, and (D) reaction times for emotional intensity ratings.

All error bars indicate the SEM. * indicates statistical significance with paired t-test, P< 0.05.

TABLE V. Postscanning behavioral results

Static–
Dynamic

Complete–
Obscured

t(17) P t(17) P

Accuracy 23.265 0.002* 0.524 0.304
Intensity 20.508 0.309 3.339 0.002*
Accuracy.RT 0.339 0.370 20.717 0.165
Intensity.RT 20.267 0.604 1.282 0.891

Paired t-test of classification accuracies, emotional intensity rat-
ings, and corresponding reaction times between static and dynam-
ic expressions and between complete and obscured expressions;
one-tailed. *Significant P values.
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used to further explore the patterns of activation in
response to the individual emotional expressions and to
investigate whether expressions could be reconstructed
from specific patterns of activation within brain regions
involved in facial expression recognition. Studies of indi-
vidual expression reconstruction may help to further ana-
lyze the contribution of each ROI to the successful
discrimination of different facial expressions.

CONCLUSION

In summary, we show that expression information is rep-
resented not only in face-selective but also in motion-
sensitive areas. Our results substantiate the importance of
face-selective areas in facial expression recognition and fur-
ther suggest that relatively domain-general motion-sensitive
areas, which are not specialized for representing only facial
attributes, may also contribute to everyday expression rec-
ognition. Moreover, we show that motion-related cues
transmit measureable quantities of expression information
that can facilitate facial expression decoding. Consistent
with the demonstrated preference of eye-related expressive
information in Asians, we also suggest that eye-related
information plays an important role in the recognition of
facial expressions. Our study extends past research of facial
expression recognition and may lead to better understand-
ing of how human beings achieve quick and easy recogni-
tion of others’ facial expressions in their everyday lives.
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